Understanding the spread of rabies

Understanding the spread of rabies At least 15 million doses of anti-rabies post-exposure prophylaxis are administered annually worldwide, and an estimated 55,000 people die of rabies every year. Over 99% of these deaths occur in developing countries, predominantly in Asia and in Africa where rabies is endemic in domestic dogs. Despite the global health burden due to rabies, little is known about the patterns of the spread of dog rabies in these endemic regions. A recent paper examines the dynamics and determinants of the spatial diffusion of dog rabies viruses in North Africa based on virus genetic data. This analysis reveals a combination of restricted spread across administrative borders, the occasional long-distance movement of rabies viruses, and a strong fit between spatial spread of the virus and road distances between localities. Together, these data indicate that by transporting dogs, humans have played a key role in the dispersal of a major animal pathogen. This study provides essential new information on the transmission dynamics of rabies in Africa and will greatly assist in future intervention strategies.

Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus. (2010) PLoS Pathog 6(10): e1001166. doi:10.1371/journal.ppat.1001166
Understanding the role of humans in the dispersal of predominately animal pathogens is essential for their control. We used newly developed Bayesian phylogeographic methods to unravel the dynamics and determinants of the spread of dog rabies virus (RABV) in North Africa. Each of the countries studied exhibited largely disconnected spatial dynamics with major geo-political boundaries acting as barriers to gene flow. Road distances proved to be better predictors of the movement of dog RABV than accessibility or raw geographical distance, with occasional long distance and rapid spread within each of these countries. Using simulations that bridge phylodynamics and spatial epidemiology, we demonstrate that the contemporary viral distribution extends beyond that expected for RABV transmission in African dog populations. These results are strongly supportive of human-mediated dispersal, and demonstrate how an integrated phylogeographic approach will turn viral genetic data into a powerful asset for characterizing, predicting, and potentially controlling the spatial spread of pathogens.


This entry was posted in Uncategorized and tagged , , , , , , , , , . Bookmark the permalink.