Haemoglobin promotes Staphylococcus aureus nasal colonization

Nose Staphylococcus aureus is an important human pathogen that is found in the nasal passages of approximately 1/3 of the population. The nose serves as a reservoir for spread of this pathogen and predisposes the host to potential infection. Factors contributing to S. aureus nasal colonization are only beginning to be understood. The collection and analysis of human nasal secretions provided evidence that the presence of haemoglobin in nasal secretions can promote S. aureus nasal colonization. Hemoglobin reduced expression of the S. aureus agr quorum sensing regulatory system known to be involved in surface colonization, and it was found that induction of the agr system reduced nasal colonization. These findings suggest that individuals experiencing frequent nosebleeds would be prone to S. aureus colonization and epidemiological data supports these findings. By understanding host factors and bacterial molecular mechanisms involved in nasal colonization we may one day be able to design novel decolonization strategies.

 

Hemoglobin Promotes Staphylococcus aureus Nasal Colonization. (2011) PLoS Pathog 7(7): e1002104. doi:10.1371/journal.ppat.1002104
Staphylococcus aureus nasal colonization is an important risk factor for community and nosocomial infection. Despite the importance of S. aureus to human health, molecular mechanisms and host factors influencing nasal colonization are not well understood. To identify host factors contributing to nasal colonization, we collected human nasal secretions and analyzed their ability to promote S. aureus surface colonization. Some individuals produced secretions possessing the ability to significantly promote S. aureus surface colonization. Nasal secretions pretreated with protease no longer promoted S. aureus surface colonization, suggesting the involvement of protein factors. The major protein components of secretions were identified and subsequent analysis revealed that hemoglobin possessed the ability to promote S. aureus surface colonization. Immunoprecipitation of hemoglobin from nasal secretions resulted in reduced S. aureus surface colonization. Furthermore, exogenously added hemoglobin significantly decreased the inoculum necessary for nasal colonization in a rodent model. Finally, we found that hemoglobin prevented expression of the agr quorum sensing system and that aberrant constitutive expression of the agr effector molecule, RNAIII, resulted in reduced nasal colonization of S. aureus. Collectively our results suggest that the presence of hemoglobin in nasal secretions contributes to S. aureus nasal colonization.

This entry was posted in Uncategorized and tagged , , , , , , . Bookmark the permalink.