Slippery Pseudomonas

Pseudomonas aeruginosa Pseudomonas aeruginosa is a common bacterium that can infect and cause disease in a wide variety of hosts, ranging from humans to plants. In healthy individuals, the innate immune system can counteract this microorganism effectively; however immunocompromised patients and cystic fibrosis patients suffer from severe infections with this bacterium. P. aeruginosa can propel itself through tissue by rotation of its long tail, called the flagellum, which is essential to establish colonization and infection of the host. The building blocks of the bacterial flagellum are over a thousand copies of the highly conserved protein flagellin. Mammals and plants have developed recognition systems to detect many different bacteria by sensing flagellin via Toll-like receptor 5 and Flagellin. Bacteria actively try to interfere with this recognition (immune evasion).

This new study describes a novel mechanism of P. aeruginosa to escape flagellin recognition. The secreted protein alkaline protease of P. aeruginosa, degrades immunity activating free flagellin. Bacterial motility is maintained, because flagellin present as building block of flagella is not degraded. In this way, the bacterium impairs recognition and hides itself from destruction by the immune system. Understanding these immune evasion strategies is of extreme importance for the development of new therapeutic approaches.


Pseudomonas Evades Immune Recognition of Flagellin in Both Mammals and Plants. 2011 PLoS Pathog 7(8): e1002206. doi:10.1371/journal.ppat.1002206
The building blocks of bacterial flagella, flagellin monomers, are potent stimulators of host innate immune systems. Recognition of flagellin monomers occurs by flagellin-specific pattern-recognition receptors, such as Toll-like receptor 5 (TLR5) in mammals and flagellin-sensitive 2 (FLS2) in plants. Activation of these immune systems via flagellin leads eventually to elimination of the bacterium from the host. In order to prevent immune activation and thus favor survival in the host, bacteria secrete many proteins that hamper such recognition. In our search for Toll like receptor (TLR) antagonists, we screened bacterial supernatants and identified alkaline protease (AprA) of Pseudomonas aeruginosa as a TLR5 signaling inhibitor as evidenced by a marked reduction in IL-8 production and NF-κB activation. AprA effectively degrades the TLR5 ligand monomeric flagellin, while polymeric flagellin (involved in bacterial motility) and TLR5 itself resist degradation. The natural occurring alkaline protease inhibitor AprI of P. aeruginosa blocked flagellin degradation by AprA. P. aeruginosa aprA mutants induced an over 100-fold enhanced activation of TLR5 signaling, because they fail to degrade excess monomeric flagellin in their environment. Interestingly, AprA also prevents flagellin-mediated immune responses (such as growth inhibition and callose deposition) in Arabidopsis thaliana plants. This was due to decreased activation of the receptor FLS2 and clearly demonstrated by delayed stomatal closure with live bacteria in plants. Thus, by degrading the ligand for TLR5 and FLS2, P. aeruginosa escapes recognition by the innate immune systems of both mammals and plants.

This entry was posted in Uncategorized and tagged , , , , , , . Bookmark the permalink.