Another animal model

Drosophila Two days ago I wrote about monkeys as an animal model for smallpox. Animal models certainly have a place in microbiology research, but here’s a rather less controversial one:

Pseudomonas aeruginosa causes serious infections in people with compromised immune systems. Individuals with cystic fibrosis and hospital patients are particularly vulnerable to P. aeruginosa infections. This bacterium does not respond to many antibiotics, making these infections difficult to treat. P. aeruginosa can grow as free-floating planktonic cells or as microcolonies known as biofilms. The ability of P. aeruginosa to form biofilms is thought to contribute to their ability to cause chronic infections. The aim of this research was to develop a simple biofilm model of infection using the fruit fly (Drosophila melanogaster). The immune system of the fruit fly has similarities with the vertebrate innate immune system. Understanding how P. aeruginosa causes infections in Drosophila will aid in understanding virulence mechanisms in mammals. This study shows that feeding P. aeruginosa to Drosophila results in a biofilm infection and biofilm infections induced expression of antimicrobial peptide immune response genes in the fly. Using fly survival as a measure of virulence it shows that biofilm infections were less virulent than non-biofilm infections. These results provide novel insight into host-pathogens interactions during P. aeruginosa infection.


Drosophila melanogaster as an Animal Model for the Study of Pseudomonas aeruginosa Biofilm Infections In Vivo. (2010) PLoS Pathog 7(10): e1002299. doi:10.1371/journal.ppat.1002299
Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.

This entry was posted in Uncategorized and tagged , , , , , , , , . Bookmark the permalink.