Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity

Influenza virus To deliver their genomes into host cells during entry, enveloped viruses contain glycoproteins that bind to cellular receptors and cause fusion of viral and cellular membranes. The influenza virus Hemagglutinin (HA) protein is the archetypal viral fusion glycoprotein, promoting entry by undergoing irreversible structural changes that drive membrane merger. HA trimers on the surfaces of infectious influenza virions are trapped in a metastable, high-energy conformation and are triggered to refold and cause membrane fusion after the virus is internalized and exposed to low pH.

This paper provides biochemical and x-ray crystallographic evidence that naturally occurring amino-acid variations at the interface of the esterase and fusogenic domains alter HA acid stability for highly pathogenic H5N1 influenza, resulting in a shift in the threshold pH required to activate HA protein structural changes that cause membrane fusion. Furthermore, the data reveals that an increased HA activation pH correlates with increased H5N1 virulence in chickens. Overall, the acid stability of the HA protein is identified as a novel virulence factor for emerging H5N1 influenza viruses. A major implication of this work is that the fitness of enveloped viruses may be fine-tuned by mutations that alter the activation energy thresholds of their fusion glycoproteins.


Acid Stability of the Hemagglutinin Protein Regulates H5N1 Influenza Virus Pathogenicity. (2011) PLoS Pathog 7(12): e1002398. doi:10.1371/journal.ppat.1002398
Highly pathogenic avian influenza viruses of the H5N1 subtype continue to threaten agriculture and human health. Here, we use biochemistry and x-ray crystallography to reveal how amino-acid variations in the hemagglutinin (HA) protein contribute to the pathogenicity of H5N1 influenza virus in chickens. HA proteins from highly pathogenic (HP) A/chicken/Hong Kong/YU562/2001 and moderately pathogenic (MP) A/goose/Hong Kong/437-10/1999 isolates of H5N1 were found to be expressed and cleaved in similar amounts, and both proteins had similar receptor-binding properties. However, amino-acid variations at positions 104 and 115 in the vestigial esterase sub-domain of the HA1 receptor-binding domain (RBD) were found to modulate the pH of HA activation such that the HP and MP HA proteins are activated for membrane fusion at pH 5.7 and 5.3, respectively. In general, an increase in H5N1 pathogenicity in chickens was found to correlate with an increase in the pH of HA activation for mutant and chimeric HA proteins in the observed range of pH 5.2 to 6.0. We determined a crystal structure of the MP HA protein at 2.50 Å resolution and two structures of HP HA at 2.95 and 3.10 Å resolution. Residues 104 and 115 that modulate the acid stability of the HA protein are situated at the N- and C-termini of the 110-helix in the vestigial esterase sub-domain, which interacts with the B loop of the HA2 stalk domain. Interactions between the 110-helix and the stalk domain appear to be important in regulating HA protein acid stability, which in turn modulates influenza virus replication and pathogenesis. Overall, an optimal activation pH of the HA protein is found to be necessary for high pathogenicity by H5N1 influenza virus in avian species.

This entry was posted in Uncategorized and tagged , , , , , , , . Bookmark the permalink.