Dissecting HIV's Latent Menace

Retrovirus replication - Principles of Molecular Virology When HIV infects a T lymphocyte, it first inserts a copy of its genome into the cell’s DNA. This inserted virus, called a provirus, then races to make as many new viruses as possible before its host cell dies. But in a few infected cells, HIV does not immediately turn its host into a viral factory. Instead, the provirus is carried around in the DNA of the cell as a transcriptionally silent (“latent”) passenger, only to explode back into action at a later time, when its host cell attempts to participate in an immune response to infection by other pathogens. Because they target the products of HIV transcription, current antiviral therapies like HAART can’t kill latent HIV. And because a full-blown infection can be re-established from a tiny reservoir of latently infected cells, viral latency is an important contributor to our struggle against HIV (Dissecting HIV’s Latent Menace. (2011) PLoS Biol 9(11): e1001209).

The following article examines the molecular mechanism responsible for the establishment and maintenance of HIV latency and its re-activation, and uncovers the role played in this process by the SWI/SNF class of chromatin remodeling complexes, which use energy from ATP to alter the structure of chromatin. Two distinct sub-classes of SWI/SNF, BAF and PBAF, play functionally opposing roles in distinct steps of the HIV promoter (or long terminal repeat, LTR) transcription cycle. The PBAF complex augments transcription of the LTR by the viral transactivator Tat. In contrast, the distinct BAF complex generates a chromatin structure at the LTR that is energetically unfavorable with respect to the intrinsic histone-DNA sequence preferences. Specifically, BAF positions a repressive nucleosome immediately downstream of the HIV transcription start site, abrogating transcription, and in this way contributes to the establishment and maintenance of HIV latency. The data describe a novel molecular mechanism for the establishment and maintenance of HIV latency, and we identify the catalytic subunit of BAF, the enzyme BRG1, as a putative molecular target to deplete the latent reservoir in infected patients.


Repressive LTR Nucleosome Positioning by the BAF Complex Is Required for HIV Latency. (2011) PLoS Biol 9(11): e1001206
Persistence of a reservoir of latently infected memory T cells provides a barrier to HIV eradication in treated patients. Several reports have implicated the involvement of SWI/SNF chromatin remodeling complexes in restricting early steps in HIV infection, in coupling the processes of integration and remodeling, and in promoter/LTR transcription activation and repression. However, the mechanism behind the seemingly contradictory involvement of SWI/SNF in the HIV life cycle remains unclear. Here we addressed the role of SWI/SNF in regulation of the latent HIV LTR before and after transcriptional activation. We determined the predicted nucleosome affinity of the LTR sequence and found a striking reverse correlation when compared to the strictly positioned in vivo LTR nucleosomal structure; sequences encompassing the DNase hypersensitive regions displayed the highest nucleosome affinity, while the strictly positioned nucleosomes displayed lower affinity for nucleosome formation. To examine the mechanism behind this reverse correlation, we used a combinatorial approach to determine DNA accessibility, histone occupancy, and the unique recruitment and requirement of BAF and PBAF, two functionally distinct subclasses of SWI/SNF at the LTR of HIV-infected cells before and after activation. We find that establishment and maintenance of HIV latency requires BAF, which removes a preferred nucleosome from DHS1 to position the repressive nucleosome-1 over energetically sub-optimal sequences. Depletion of BAF resulted in de-repression of HIV latency concomitant with a dramatic alteration in the LTR nucleosome profile as determined by high resolution MNase nucleosomal mapping. Upon activation, BAF was lost from the HIV promoter, while PBAF was selectively recruited by acetylated Tat to facilitate LTR transcription. Thus BAF and PBAF, recruited during different stages of the HIV life cycle, display opposing function on the HIV promoter. Our data point to the ATP-dependent BRG1 component of BAF as a putative therapeutic target to deplete the latent reservoir in patients.

This entry was posted in Uncategorized and tagged , , , , , , . Bookmark the permalink.