Kinky bacteria are bad for you

Campylobacter jejuni Bacterial cell shape is dictated by the composition of the cell envelope component peptidoglycan. Some important pathogens have a characteristic helical corkscrew morphology that may help them burrow into mucus overlaying cells to initiate colonization and pathogenicity. One example is Campylobacter jejuni, the leading cause of bacterial-induced diarrheal disease in the developed world.

Direct evidence supporting the hypothesis that C. jejuni shape is related to its pathogenicity traits has not previously been provided. Researchers have identified a gene encoding a peptidase modifying peptidoglycan that is essential for maintaining the C. jejuni corkscrew shape. We can now connect a C. jejuni gene with morphology and peptidoglycan biosynthesis. Loss of this gene was also found to affect pathogenic attributes such as chicken colonization, biofilms, motility, and activation of host inflammatory mediators. In addition, this is the first study to thoroughly characterize C. jejuni peptidoglycan structure and to identify a gene involved in peptidoglycan maintenance.

These findings highlight an emerging theme in bacterial pathogenesis research: the connection between bacterial cell biology and pathogenesis. Finally, characterization of C. jejuni cell shape and peptidoglycan provides a starting point for further work in this area in C. jejuni and other bacteria with curved and helical morphologies.

 

Peptidoglycan-Modifying Enzyme Pgp1 Is Required for Helical Cell Shape and Pathogenicity Traits in Campylobacter jejuni. (2012) PLoS Pathog 8(3): e1002602. doi:10.1371/journal.ppat.1002602
The impact of bacterial morphology on virulence and transmission attributes of pathogens is poorly understood. The prevalent enteric pathogen Campylobacter jejuni displays a helical shape postulated as important for colonization and host interactions. However, this had not previously been demonstrated experimentally. C. jejuni is thus a good organism for exploring the role of factors modulating helical morphology on pathogenesis. We identified an uncharacterized gene, designated pgp1 (peptidoglycan peptidase 1), in a calcofluor white-based screen to explore cell envelope properties important for C. jejuni virulence and stress survival. Bioinformatics showed that Pgp1 is conserved primarily in curved and helical bacteria. Deletion of pgp1 resulted in a striking, rod-shaped morphology, making pgp1 the first C. jejuni gene shown to be involved in maintenance of C. jejuni cell shape. Pgp1 contributes to key pathogenic and cell envelope phenotypes. In comparison to wild type, the rod-shaped pgp1 mutant was deficient in chick colonization by over three orders of magnitude and elicited enhanced secretion of the chemokine IL-8 in epithelial cell infections. Both the pgp1 mutant and a pgp1 overexpressing strain – which similarly produced straight or kinked cells – exhibited biofilm and motility defects. Detailed peptidoglycan analyses via HPLC and mass spectrometry, as well as Pgp1 enzyme assays, confirmed Pgp1 as a novel peptidoglycan DL-carboxypeptidase cleaving monomeric tripeptides to dipeptides. Peptidoglycan from the pgp1 mutant activated the host cell receptor Nod1 to a greater extent than did that of wild type. This work provides the first link between a C. jejuni gene and morphology, peptidoglycan biosynthesis, and key host- and transmission-related characteristics.

 

Don’t understand how cell shape can affect pathogenesis? Neither do I! That’s why I’ll be at #microtwjc at 8pm UK time tonight!

 

This entry was posted in Uncategorized and tagged , , , , . Bookmark the permalink.