Extreme virus resistance in plants

Extreme resistance When a virus infects a plant, a slient war rages, fought with RNA weapons.


Multiple and complex layers of defense help plants to combat pathogens. A first line of defense relies on the detection, via dedicated host-encoded receptors, of signature molecules (so called pathogen-associated molecular patterns, PAMPs) produced by pathogens. In turn, this PAMP-triggered immunity (PTI) may be itself antagonized by adapted pathogens that have evolved virulence effectors to target key PTI components. Host plants react to PTI suppression by producing disease resistance (R) proteins that recognize virulence effectors and activate highly specific resistance called Effector Triggered Immunity (ETI). It has been noted that RNA silencing, a sequence-specific antiviral defense response based on the production of virus-derived 21–24 nt small RNAs on the one hand, and its suppression by virulence effectors, called viral suppressors of RNA silencing (VSRs) on the other, are conceptually similar to PTI. A new paper in PLOS Pathogens supports this hypothesis by showing that extreme resistance is indeed activated following detection, in specific host species, of the VSR activity of a viral virulence effector. The ensuing antiviral immunity displays many characteristics of ETI, suggesting that one or several R proteins must sense the integrity of the host silencing machinery.


Extreme Resistance as a Host Counter-counter Defense against Viral Suppression of RNA Silencing. (2013) PLoS Pathog 9(6): e1003435. doi:10.1371/journal.ppat.1003435
RNA silencing mediated by small RNAs (sRNAs) is a conserved regulatory process with key antiviral and antimicrobial roles in eukaryotes. A widespread counter-defensive strategy of viruses against RNA silencing is to deploy viral suppressors of RNA silencing (VSRs), epitomized by the P19 protein of tombusviruses, which sequesters sRNAs and compromises their downstream action. Here, we provide evidence that specific Nicotiana species are able to sense and, in turn, antagonize the effects of P19 by activating a highly potent immune response that protects tissues against Tomato bushy stunt virus infection. This immunity is salicylate- and ethylene-dependent, and occurs without microscopic cell death, providing an example of “extreme resistance” (ER). We show that the capacity of P19 to bind sRNA, which is mandatory for its VSR function, is also necessary to induce ER, and that effects downstream of P19-sRNA complex formation are the likely determinants of the induced resistance. Accordingly, VSRs unrelated to P19 that also bind sRNA compromise the onset of P19-elicited defense, but do not alter a resistance phenotype conferred by a viral protein without VSR activity. These results show that plants have evolved specific responses against the damages incurred by VSRs to the cellular silencing machinery, a likely necessary step in the never-ending molecular arms race opposing pathogens to their hosts.



This entry was posted in Uncategorized and tagged , , , , , . Bookmark the permalink.